L \
AR
i ’ » v

Chris Evans - Google
Billy Rios - Microsoft

Who are we?

e Chris Evans

o Troublemaker, Engineer, Tech Lead, Google Security Team
O

O

e Billy Rios
o Model, Security Engineer, Microsoft
<,

http://scary.beasts.org/
http://scarybeastsecurity.blogspot.com/
http://xs-sniper.com/

Shoulders of giants
Credits

e Filipe Almeida, Google
e Michal Zalewski, Google
e Drew Hintz, Google

e Kanatoko

Cross-domain leakiness

Overview

e Introduction

e Background information

e Cross-domain bugs

e Cross-domain issues by design
e Attacking browser SSL sessions
e Demo

Cross-domain leakiness

Introduction

e Is your web app cross-domain safe?
e What about your users’ browsers?

Background information
Man-in-the-middle (MITM)

e Someone who can intercept your network traffic
o Particularly on wireless networks
e No MITM
o Attacks you via enticing to evil URLs
e Passive MITM
o Only reads your traffic going past
o e.g.: government black box @ ISP
e Active MITM
o Can also forge responses / requests
o e.g.: free wireless

Background information

Single session browsing

e A model of web usage for paranoid users
e Based on distrust

o Of same origin policy

o Of browser's security

o Of separation of data

o Of web app

Background information

Cross-site script inclusion

e Sometimes called XSSI
e Sometimes bucketed under XSRF / CSRF
e Loads remote authenticated resource
o <script src="http://remote.com/sensitive"/>

Background information

Cookie security model

e Original cookie model:

o Send if domain, path match
e Same origin policy added for DOM access:

o Grant access if protocol, domain, port match
e Cookie model leaked https cookies over http

o "Secure" cookie attribute added

Cross-domain bugs
Firefox #1: image theft

e Can steal authenticated images
e Fixed in latest 2.0 / all 3.0
e Introduced with canvas getlmageData()
o Or toDataUrl()
e Previously no way to read image pixels
e Domain is checked but 302 redirect trick works
e \WeDbKit nightly also had same bug
e 302 redirect trick also worked in past
®

https://cevans-app.appspot.com/static/ff2stealimgbug.html

Cross-domain bugs
Firefox #2: hex string theft

e Can steal authenticated hex strings

e Fixed in latest 3.0 / 2.0.

e Again uses 302 trick.

e Reads Javascript error messages across domain.
o

http://cevans-app.appspot.com/static/ff3scriptredirbug.html

Cross-domain bugs
Safari #1: File theft

e Still not yet fixed in a production release
o So withholding details
o Bug #1 / #2 reported May / June 2008
e Failure to do origin check in obscure cross-domain
area
e Simple demo

Cross-domain bugs
Safari #2: XML theft

e Also not yet fixed in production release
e XML often used as protocol for:

o AJAX apps

o Web services

o Feeds (including authenticated ones)
e Also don't forget XHTML
e Simple demo

Cross-domain bugs
Safari #3: File theft

-ixed with CVE-2008-3638
~ailure to enforce remote to local boundaries
nvolves Java Applets

e getAppletContext().showDocument(url);

http://xs-sniper.com/blog/2008/11/19/stealing-files-with-safari/
http://xs-sniper.com/blog/2008/11/19/stealing-files-with-safari/

Cross-domain bugs
Safari #4: File theft

-ixed with CVE-2009-0137

-ailure to enforce remote to local boundaries
nadequate sanitization/filtering/encoding of
Attacker controlled XML

Cross-domain bugs
Safari #4: File theft

o Attack XML
o <content:encoded><![CDATA[
<body src="image.JPG”

11>

</content:encoded>
e Resulting HTML
o <div class="apple-rss-article-body”’>
<body src="image.JPG”

</body> <!- end articlebody —
></div>

Cross-domain bugs
WebKit: pixel theft

e Nice in
WebKit nightly
o Illustrates danger of unexpected interactions
e Collaborating features:
o SVG support
o SVG as target
o getlmageData()
o <image> within SVG
e Could be worse with <html:iframe>

http://scarybeastsecurity.blogspot.com/2008/08/dangerous-combination-of-browser.html

Cross-domain bugs

You want more?

e New browser features always adding new cross-
domain areas and interactions
o Sometimes obscure
o CSS3
e Need a comprehensive list of where browsers will
handle data cross-domain
e Spreadsheet to document areas and testing:
O

https://spreadsheets.google.com/ccc?key=pEFQCm3fodP3jM-lyIwjwSw
https://spreadsheets.google.com/ccc?key=pEFQCm3fodP3jM-lyIwjwSw

What’s in a Name?
Case Study: Flash DNS Rebinding

e Quick reminder of DNS Rebinding / Pinning Issues
e The Attacker controls DNS for Foo.com

e Make a request for Foo.com, foo.com points to
111.111.111.111

e The Attacker changes the DNS entry for Foo.com to
10.1.1.1

e Attacker uses previously loaded content to steal

information from 10.1.1.1

What’s in a Name?
Case Study: Flash DNS Rebinding

e Fixed with CVE-2008-1655
e Distinguishing between two forms of the same name
e Jumperz (Kanatoko) is the MAN!

o Based off of the original, but with a small twist

What’s in a Name?
Case Study: Flash DNS Rebinding

e Dealing with domain names ending with a “.”

e Now, are XS-Sniper.com and XS-Sniper.com. the same?
e Sockets in Flash made things interesting ©

e This is fixed... why talk about this now?

o SSL?
o Same Origin Policy?

Design issue
CSS property theft

e Browsers
o <link rel="stylesheet" href="http://remote/blah”
/>
e Browsers auto-detect and extract inline <style> from
HTML
e Can read property values from JavaScript
e Great cross-app way of determining login status
e Not much of sensitivity stored in properties yet
®

http://scarybeastsecurity.blogspot.com/2008/08/cross-domain-leaks-of-site-logins.html
http://cevans-app.appspot.com/static/mslogin.html

Design issue

XSSI - remote script inclusion

e This problem is nasty because it gets worse over
time!
o More and more textual constructs are becoming

valid JavaScript
e Valid JavaScript from remote domain will execute

just fine
e Can't read source but can observe side effects from

executing source

Cross-site script inclusion

XSSI: stealable constructs

e Function callback
o e.g. "callback_func(1, 'data’);"
e Setting variables
o e.g."var result = 100;"
e Function definition
o e.g. "function blah() { vara=1; }"
e JavaScript array data (FireFox 2)
ce.g."[1, 2, 3, 4]

XSS

Future directions

e XML theft

o Remembering that XHTML and some HTML parses

as XML
o XML is valid JavaScript with E4X support
m FireFox2, FireFox3

e Theft via
e Random FireFox bug: XML injection into XML
e Demo:

http://code.google.com/p/doctype/wiki/ArticleE4XSecurity
https://cevans-app.appspot.com/static/e4xtheft.html

XSS

Future directions

e Core language overloads
o Overload XML constructors
o Overload Number constructor
o Overload Error types
o Overload primitive objects

XSS

Remediation

e Apply XSRF protection

o Not feasible to do for all authenticated GETs
e Break JavaScript execution or syntax

o while(1); is seen a lot

m What if the "1" fired Number()
o Prefer to break syntax hard or use something
unlikely to be overloadable

o e.g. "for (;;);" or ")J}"

e Include XML prolog and DTD always

Active MITM against SSL sites

e Mixing Content... it shouldn’t be DONE!

e HTTP script cannot access SECURE cookies

e HTTPS pages can load HTTP javascript

e Find insecure script references (CSS works too)
®

-ORCE the loading of insecure script references over
ATTPS

Active MITM against SSL sites

HTTP page with:

<html><body-.....

<script src="http://domain/somejavascript.js '></script>
..... </body></html>

Then force that page to be loaded as HTTPS

Active MITM against SSL sites

e The attacker forces the victim's browser to render the
HTTPS site with mixed content

e The HTTP Javascript request/response is tamperable
by the attacker

e Now an attacker can MITM an SSL protected site
without ANY WARNINGS on many browsers!

e Real Life Examples...
O
O

https://www.apple.com/
https://wordpress.com/

Design issue

Cookie forcing

e Name picked based on Google Search
o "Cookie forcing” -> 123 hits

e OMG! Name does not have “jacking” in it
o Call it "cookie force-jacking” if that would make

you happy :)

Cookie forcing
What is it?

e The cookie model is still a bit dangerous, even with
Secure flag
e 'Read” was fixed but not "Write"
e Therefore, http://bank.com/ can overwrite Secure
cookies used by https://bank.com/
e This part is well known and not new
o New part is attack details / delivery mechanism

Cookie forcing

What can evil cookies do?

e Apps often trust their cookies completely

o | put it there so | can trust it

o Using https so not expecting integrity violation

e Evil cookie forcing is sidejacking to the max -
breaking an https app despite it following (current)
best practices

Cookie forcing

XSS via cookie planting

e App escaped the cookie on write...

® ... SO no need to be careful on read, right?
e X5S via HTML generation or DOM access

e XSS via JSON eval()

Cookie forcing
XSRF via cookie planting

e One common XSRF protection is to compare nonce
with URL param

e For apps at scale, store nonce in cookie

e Now, attacker controls nonce cookie and URL
param!

Cookie forcing

App logic cookies

e Some cookies affect app logic
e Irritations

o Display language

o Persistently break app
e More seriously

o Sensitive settings

o Debug modes

Cookie forcing
Login / logout XSRF

e Not much to stop you dropping in attacker's
account’s auth cookie
o (Well, see mitigations to follow)
o Links nicely to Billy's "Biting the Hand that Feeds
you" presentation

e Same applies to nuking existing auth cookie

e Attack can be "silent”

e Theft of data on POST thwarted by XSRF protection
o How is XSRF token mismatch handled?

Cookie forcing
Mitigations

e Assume cookie data is evil
o Parse and escape it, don't eval() it
e 5igh your sensitive cookies
o Do not forget to tie to user
o Best to tie to current session
e Login / logout XSRF is hard
o You can randomize your cookie names
o But then must handle attacker's dupes
m \Which is the real one?!

Attacking the paranoid

Accessing your bank?

e Recall the 1 window, 1 tab model
e Hit https bookmark only
e Then you got pwned

o What happened?

Attacking the paranoid

What's your browser up to?

Updating anti-phishing / malware lists
_oading https cert details... over http
Update pings

RSS feed updates

Attacking the paranoid

Hmm... plain http

e Attacker can respond with 302 redirect
o To arbitrary domain
e Browser sends out new request
e Attacker can respond with some cookies
e Set or clear arbitrary cookies on any domain
o Including those marked Secure
o Or could shadow existing cookies
e Beauty of attack is silence
o Background request redirects not noisy on URL
bar

Attacking the paranoid

Other opportunties

e Poison cache to affect future sessions
o http only
e Poison cookies to affect future sessions
e Very stealthy exploit of any XSRF bug
e Scary. self-XSS attacks with "divided login" attack

Attacking the paranoid

Mitigations

e Do not rely on browser https to provide integrity on
untrusted networks

e Use VPN to a more trusted network

e Disable browser's features leading to plain http
requests (but did you miss one?)

e Set your proxy to localhost:1 for http protocol

Demo

For cookie forcing

A

A
\
i

-
\ 5

‘ LN

- A N

s ?\g
[¢

| 22

