
Cross-domain leakiness
Divulging sensitive information & attacking SSL
sessions
Chris Evans - Google
Billy Rios - Microsoft

 Who are we?

Chris Evans
Troublemaker, Engineer, Tech Lead, Google Security Team
http://scary.beasts.org/
http://scarybeastsecurity.blogspot.com/

Billy Rios
Model, Security Engineer, Microsoft
http://xs-sniper.com/

http://scary.beasts.org/
http://scarybeastsecurity.blogspot.com/
http://xs-sniper.com/

 Shoulders of giants
 Credits

Filipe Almeida, Google
Michal Zalewski, Google
Drew Hintz, Google
Kanatoko

 Cross-domain leakiness
 Overview

Introduction
Background information
Cross-domain bugs
Cross-domain issues by design
Attacking browser SSL sessions
Demo

 Cross-domain leakiness
 Introduction

Is your web app cross-domain safe?
What about your users' browsers?

 Background information
 Man-in-the-middle (MITM)

Someone who can intercept your network traffic
Particularly on wireless networks

No MITM
Attacks you via enticing to evil URLs

Passive MITM
Only reads your traffic going past
e.g.: government black box @ ISP

Active MITM
Can also forge responses / requests
e.g.: free wireless

 Background information
 Single session browsing

A model of web usage for paranoid users
Based on distrust

Of same origin policy
Of browser's security
Of separation of data
Of web app

 Background information
 Cross-site script inclusion

Sometimes called XSSI
Sometimes bucketed under XSRF / CSRF
Loads remote authenticated resource

<script src="http://remote.com/sensitive"/>

 Background information
 Cookie security model

Original cookie model:
Send if domain, path match

Same origin policy added for DOM access:
Grant access if protocol, domain, port match

Cookie model leaked https cookies over http
"Secure" cookie attribute added

 Cross-domain bugs
 Firefox #1: image theft

Can steal authenticated images
Fixed in latest 2.0 / all 3.0
Introduced with canvas getImageData()

Or toDataUrl()
Previously no way to read image pixels
Domain is checked but 302 redirect trick works
WebKit nightly also had same bug
302 redirect trick also worked in past
Simple demo

https://cevans-app.appspot.com/static/ff2stealimgbug.html

 Cross-domain bugs
 Firefox #2: hex string theft

Can steal authenticated hex strings
Fixed in latest 3.0 / 2.0.
Again uses 302 trick.
Reads Javascript error messages across domain.
Simple demo

http://cevans-app.appspot.com/static/ff3scriptredirbug.html

 Cross-domain bugs
 Safari #1: File theft

Still not yet fixed in a production release
So withholding details
Bug #1 / #2 reported May / June 2008

Failure to do origin check in obscure cross-domain
area
Simple demo

 Cross-domain bugs
 Safari #2: XML theft

Also not yet fixed in production release
XML often used as protocol for:

AJAX apps
Web services
Feeds (including authenticated ones)

Also don't forget XHTML
Simple demo

 Cross-domain bugs
 Safari #3: File theft

Fixed with CVE-2008-3638
Failure to enforce remote to local boundaries
Involves Java Applets
http://xs-sniper.com/blog/2008/11/19/stealing-
files-with-safari/
getAppletContext().showDocument(url);

http://xs-sniper.com/blog/2008/11/19/stealing-files-with-safari/
http://xs-sniper.com/blog/2008/11/19/stealing-files-with-safari/

 Cross-domain bugs
 Safari #4: File theft

Fixed with CVE-2009-0137
Failure to enforce remote to local boundaries
Inadequate sanitization/filtering/encoding of
Attacker controlled XML

 Cross-domain bugs
 Safari #4: File theft

Attack XML
<content:encoded><![CDATA[
<body src=”image.JPG” onload=”javascript:alert
('xss’);”“<onload=””
]]>
</content:encoded>

Resulting HTML
<div class=”apple-rss-article-body”>
<body src=”image.JPG” onload=”javascript:alert
(‘xss’);”>
<onload></onload></body> <!– end articlebody –
></div>

 Cross-domain bugs
 WebKit: pixel theft

Nice combination of features came together in
WebKit nightly
Illustrates danger of unexpected interactions
Collaborating features:

SVG support
SVG as target
getImageData()
<image> within SVG

Could be worse with <html:iframe>

http://scarybeastsecurity.blogspot.com/2008/08/dangerous-combination-of-browser.html

 Cross-domain bugs
 You want more?

New browser features always adding new cross-
domain areas and interactions

Sometimes obscure
CSS3

Need a comprehensive list of where browsers will
handle data cross-domain
Spreadsheet to document areas and testing:

https://spreadsheets.google.com/ccc?
key=pEFQCm3fodP3jM-lyIwjwSw

https://spreadsheets.google.com/ccc?key=pEFQCm3fodP3jM-lyIwjwSw
https://spreadsheets.google.com/ccc?key=pEFQCm3fodP3jM-lyIwjwSw

 What’s in a Name?
 Case Study: Flash DNS Rebinding

Quick reminder of DNS Rebinding / Pinning Issues
The Attacker controls DNS for Foo.com
Make a request for Foo.com, foo.com points to
111.111.111.111
The Attacker changes the DNS entry for Foo.com to
10.1.1.1
Attacker uses previously loaded content to steal
information from 10.1.1.1

 What’s in a Name?
 Case Study: Flash DNS Rebinding

Fixed with CVE-2008-1655
Distinguishing between two forms of the same name
Jumperz (Kanatoko) is the MAN!

Based off of the original, but with a small twist

 What’s in a Name?
 Case Study: Flash DNS Rebinding

Dealing with domain names ending with a “.”

Now, are XS-Sniper.com and XS-Sniper.com. the same?

Sockets in Flash made things interesting ☺

This is fixed… why talk about this now?
SSL?
Same Origin Policy?

 Design issue
 CSS property theft

Browsers load CSS cross-domain
<link rel="stylesheet" href="http://remote/blah"
/>

Browsers auto-detect and extract inline <style> from
HTML
Can read property values from JavaScript
Great cross-app way of determining login status
Not much of sensitivity stored in properties yet
Login detection demo

http://scarybeastsecurity.blogspot.com/2008/08/cross-domain-leaks-of-site-logins.html
http://cevans-app.appspot.com/static/mslogin.html

 Design issue
 XSSI - remote script inclusion

This problem is nasty because it gets worse over
time!

More and more textual constructs are becoming
valid JavaScript

Valid JavaScript from remote domain will execute
just fine
Can't read source but can observe side effects from
executing source

 Cross-site script inclusion
 XSSI: stealable constructs

Function callback
e.g. "callback_func(1, 'data');"

Setting variables
e.g."var result = 100;"

Function definition
e.g. "function blah() { var a = 1; }"

JavaScript array data (FireFox 2)
e.g. "[1, 2, 3, 4]"

 XSSI
 Future directions

XML theft
Remembering that XHTML and some HTML parses
as XML
XML is valid JavaScript with E4X support

FireFox2, FireFox3
Theft via JavaScript injection into XML
Random FireFox bug: XML injection into XML
Demo: E4X based theft

http://code.google.com/p/doctype/wiki/ArticleE4XSecurity
https://cevans-app.appspot.com/static/e4xtheft.html

 XSSI
 Future directions

Core language overloads
Overload XML constructors
Overload Number constructor
Overload Error types
Overload primitive objects

 XSSI
 Remediation

Apply XSRF protection
Not feasible to do for all authenticated GETs

Break JavaScript execution or syntax
while(1); is seen a lot

What if the "1" fired Number()
Prefer to break syntax hard or use something
unlikely to be overloadable
e.g. "for (;;);" or ")]}"

Include XML prolog and DTD always

 Active MITM against SSL sites

Mixing Content… it shouldn’t be DONE!
HTTP script cannot access SECURE cookies
HTTPS pages can load HTTP javascript
Find insecure script references (CSS works too)
FORCE the loading of insecure script references over
HTTPS

 Active MITM against SSL sites

HTTP page with:
<html><body>.....
<script src="http://domain/somejavascript.js"></script>
.....</body></html>

Then force that page to be loaded as HTTPS

 Active MITM against SSL sites

The attacker forces the victim's browser to render the
HTTPS site with mixed content

The HTTP Javascript request/response is tamperable
by the attacker

Now an attacker can MITM an SSL protected site
without ANY WARNINGS on many browsers!

Real Life Examples…

https://www.apple.com/
https://wordpress.com/

https://www.apple.com/
https://wordpress.com/

 Design issue
 Cookie forcing

Name picked based on Google Search
"Cookie forcing" -> 123 hits

OMG! Name does not have "jacking" in it
Call it "cookie force-jacking" if that would make
you happy :)

 Cookie forcing
 What is it?

The cookie model is still a bit dangerous, even with
Secure flag
"Read" was fixed but not "Write"
Therefore, http://bank.com/ can overwrite Secure
cookies used by https://bank.com/
This part is well known and not new

New part is attack details / delivery mechanism

 Cookie forcing
 What can evil cookies do?

Apps often trust their cookies completely
I put it there so I can trust it
Using https so not expecting integrity violation

Evil cookie forcing is sidejacking to the max -
breaking an https app despite it following (current)
best practices

 Cookie forcing
 XSS via cookie planting

App escaped the cookie on write...
... so no need to be careful on read, right?
XSS via HTML generation or DOM access
XSS via JSON eval()

 Cookie forcing
 XSRF via cookie planting

One common XSRF protection is to compare nonce
with URL param
For apps at scale, store nonce in cookie
Now, attacker controls nonce cookie and URL
param!

 Cookie forcing
 App logic cookies

Some cookies affect app logic
Irritations

Display language
Persistently break app

More seriously
Sensitive settings
Debug modes

 Cookie forcing
 Login / logout XSRF

Not much to stop you dropping in attacker's
account's auth cookie

(Well, see mitigations to follow)
Links nicely to Billy's "Biting the Hand that Feeds
you" presentation

Same applies to nuking existing auth cookie
Attack can be "silent"
Theft of data on POST thwarted by XSRF protection

How is XSRF token mismatch handled?

 Cookie forcing
 Mitigations

Assume cookie data is evil
Parse and escape it, don't eval() it

Sign your sensitive cookies
Do not forget to tie to user
Best to tie to current session

Login / logout XSRF is hard
You can randomize your cookie names
But then must handle attacker's dupes

Which is the real one?!

 Attacking the paranoid
 Accessing your bank?

Recall the 1 window, 1 tab model
Hit https bookmark only
Then you got pwned

What happened?

 Attacking the paranoid
 What's your browser up to?

Updating anti-phishing / malware lists
Loading https cert details... over http
Update pings
RSS feed updates

 Attacking the paranoid
 Hmm... plain http

Attacker can respond with 302 redirect
To arbitrary domain

Browser sends out new request
Attacker can respond with some cookies
Set or clear arbitrary cookies on any domain

Including those marked Secure
Or could shadow existing cookies

Beauty of attack is silence
Background request redirects not noisy on URL
bar

 Attacking the paranoid
 Other opportunties

Poison cache to affect future sessions
http only

Poison cookies to affect future sessions
Very stealthy exploit of any XSRF bug
Scary: self-XSS attacks with "divided login" attack

 Attacking the paranoid
 Mitigations

Do not rely on browser https to provide integrity on
untrusted networks
Use VPN to a more trusted network
Disable browser's features leading to plain http
requests (but did you miss one?)
Set your proxy to localhost:1 for http protocol

 Demo
 For cookie forcing

 Gratuitous marmot picture

 Q & A

